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Mechanisms of decay of laminar and turbulent vortices

By MAHINDER S. UBEROI

University of Colorado, Boulder, Colorado 80309

Dynamics of an infinitely long one-dimensional vortex and a swirl are com-
pared with dynamics of a semi-infinitely long trailing vortex and trailing
swirl. With increasing distance, the change in axial velocity difference between
the core of the trailing-vortex and the surrounding region causes radial
convection and some associated axial convection of angular momentum. In laminar
or turbulent trailing vortices, this is the dominant mechanism for decrease in
velocities of swirl in the core and corresponding growth of the core. Axial
velocity difference between the core of the trailing-vortex and the surrounding
region is necessary for the sustenance of turbulence in the vortex core. A
theory of turbulent trailing-vortex is developed on the basis of these mechanisms

and the results are compared with experimental observations.
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1. Introduction

There are a variety of theories and views about unconfined and semi-
infinitely or infinitely long turbulent swirls and vortices. These theories
are neither confirmed nor refuted by experimental investigations, since very
few experiments exist where the effects of initial conditions and extraneous
influences have been minimized. We critically examine the assumptions under-
lying these theories and show that many of these are far-fetched. We find
correct physical processes. The results of analysis based on these physical
processes are compared with the most recently available experiments.

There are four distinct types of flows which are relevant here. An infinitely
long LINE SWIRL with a single velocity component ue(r,t) ,» where r is the
radial distance from the swirl axis z , subscript 0 refers to the angular
coordinate, and t Ls the time. Its angular momentum pM per unit axlal

distance is constant and independent of time, where

M = 2nofwue(r,t)r2dr 5 (1)

and p 1is the density of the fluid. A prime, as u'e, will be used to denote
the fluctuating part of a quantity. Otherwise, the symbol represents either a
quantity in a laminar flow or its mean value in a turbulent flow.

The second flow is an infinitely long LINE VORTEX with one velocity
component ue(r,t) such that ug = PO/an for large r with zero velocity
at r = 0. Its angular momentum per unit distance along the swirl axis is in-
finite and its rate of change of angular momentum is finite depending on vis-

cosity. It is further assumed that 3P2/3r>0 where T = 2ﬂrue.
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The third flow is a TRAILING SWIRL with three velocity components uz(t,z),
ue(r,z), and ur(r,z), where 2z 1is the distance along the axis of the trailing
swirl measured from its origin. It may be produced by rotating vanes with the
axis of rotation parallel to the prevailing uniform steady flow u, The vanes

may add to or absorb some axial momentum of the prevailing flow. Thus we have

a swirl which may have a coaxial jet or a wake. As r »> « g, = n = 0,
and PR ) The flux of angular momentum
A = 2mp fmu (r,z) u,(r,z) r2 dr (2)
LARE @2

is independent of z.

The fourth flow is a TRAILING VORTEX produced at the tip of a semi-infinite
lifting wing in the presence of a prevailing mean flow. The trailing vortex
has some similarity to a trailing swirl having three velocity components, with

the important difference that as r + =, = 0, u, = Po [24r “ *a

6

where Fo is the total circulation. The flux of angular momentum is infinite,

[¢]

but its change
dA/dz = 2mp I?i_(u u,) rz dr (3)
o’ 3z 2z B

is finite and depends on 2z . It is further assumed that 8F2/3r > 0.
Initially, in all these flows vorticity is assumed to be confiﬂed to a

region of small radius and moments of all orders of any vorticity component

with respect to z-axis exist. The cores of these flows are regions where

most of vorticity is located. This paper is concerned with the growth of these

cores or the spread of initially concentrated vorticity due to viscous and

turbulent processes.
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In analyzing the third and fourth flows, it is invariably assumed that u,
may be neglected, e, and z 1is replaced by tu0 , thus reducing the
trailing swirl to the line swirl and the trailing vortex to a line vortex. We
indicate below and subsequently show in detail that this approximation is
invalid.

As a trailing swirl or a trailing vortex develops, swirl velocities
Uy decrease with the downstream distance z. Since the pressure at large r
is constant, near the axis of a swirl or a vortex this leads to 29dp/dz > 0
where p 1s the pressure. This implies divergence of the cores of these
flows and an axial velocity difference between the cores of these flows and
the surrounding regions that have three important effects on the dynamics of
these trailing flows which are absent in a line swirl and a line vortex.

(1) Linear and non-linear stability analyses (Uberoi et al. 1972; Narain and
Uberoi 1973) show that a difference of axial velocities between the core and
the surroundings destabilizes swirling flows which otherwise could be stable.
(2) There may be significant and sometimes dominant radial and associated axial
convection of angular momentum. (3) The range of downstream distances over
which dynamic self-similarity exists may be limited. The importance of these
effects decreases with decreasing rate of spread of these flows. However, in
the study of trailing flows with swirl the emphasis is on their rates of growth

rather than on the final stages where they have practically ceased to grow.
2. Laminar Swirl, Line Vortex, and Their Stabilities.

It is important to consider the dynamics and stability of the basic




laminar flow, a part of which may become turbulent. In swirling flows the

basic laminar flow may enhance, diminish, or even quench turbulence in its

interior. These, sometimes strong, stabilizing or destabilizing effects must
be considered when postulating turbulent stresses in these flows.

The equation of motion for a swirl or a line vortex is

o M. SR i 32
56T Y T Vgpir gp el ()
where v 1is the kinematic viscosity.
A swirl of finite M diffuses out due to viscosity and shares its

angular momentum with the surrounding fluid which is set into motion. Its

: 15

t » Reynolds number is (M/t)?*/v. A known self-similar swirl is ”
g M r2 2

'E e 2eru, = 5o (g ) exp (= fane)., (5)

E In a line vortex uy = Fo / 2nr for r » < and the rate of change

of angular momentum,
w 2 e
2"01 - u dr 2vr . 6)

This rate is independent of the detailed distribution of the vorticity

or ug in the interior of the vortex. If we assume finite v then there are

stresses but no net force on a fluid element in the potential flow surrounding

the core where most of the vorticity resides. The angular momentum is lost
from the interior of the vortex through the potential flow region to the region
1 r » » . The core over which most, say 95%, of the total vorticity or Po is

distributed grows and so does its angular momentum. This is due to infinite
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angular momentum surrounding any finite though growing interior region. The
Reynolds number is Fo/v .

A known self-similar solution for the line vortex is
= o 2
I = 2wru, = Po [1 - exp(-r /4vt)] 7)
We may combine (5) and (7) to get a vortex-swirl combination
M t2 2
Fr [1 + { §3EF: (Z;E) - 11} exp (-r /Avti] (8)

In a line vortex (7) shows that the circulation increases monotonically
with radius reaching a constant value Po . In a swirl total vorticity is zero
and T increases and then decreases to zero for large r. In a line-vortex-swirl
example given by (8) T overshoots FO , then decreascs to Fo for r » w ,
This overshoot decreases and becomes relatively insignificant with time and may
be considered as a decaying 'initial' disturbance.

This is a speclal case of a general result. 1f the initial vorticity is
axisymmetric and is distributed over a finite area around the origin then
its subsequent distribution can be found using (4). After a long time vorticity
and velocity distributions will appear as if the total vorticity were originally
at the origin, any initial vorticity distribution of opposite signs and zero
total value having no significant influence. If, however, the total vorticity
is zero, then the initial distribution of the vorticity determines the sub-
sequent state of the vorticity and the velocity.

We may look at the situation from the point of view of dynamics. The
angular momentum associated with a finite total vorticity is infinite and it

is finite for a distribution of vorticity of opposite signs such that the total
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vorticity or Fo is zero. As time progresses the former will dominate the latter.
We are assuming initially concentrated vorticity near the axis.

These well known results are presented to contrast some properties of
laminar flows with corresponding properties of the flows with the same overall
parameters and in turbulent state. For example, in a laminar line-vortex-
swirl the dynamics of any region of overshoot where I > Po become in time
unimportant to the dynamics of the main vortex. While in a turbulent line-
vortex-swirl Govindraju and Saffman (1971) assert that at high Reynolds numbers
the overshoot, T > Fo, is the main growth mechanism of a turbulent vortex.

The virtual origin of the time t for a line-swirl and line-vortex may
not be the same. This becomes insignificant as t becomes large. However,
for both small and large t we define a line-vortex-swirl as a flow which
behaves like a vortex for sufficiently large r and for some finite range of
I, dF2/dr < 0. This slight generalization is necessary for the purpose at
hand, which is to study the stability and turbulence in such flows.

An Important criterion based on analysis assuming inviscid flow for
stability of swirling flows with onc¢ velocity component u, (r,t) is, (Rayleigh

1916), (Chandrasekhar 1961),
2
dr® /dr > 0. 9)

A line vortex is stable at all times. A swirl is unstable. A line-
vortex-swirl is unstable and its interior may become turbulent at a sufficiently
high Reynolds number. However, as the time progresses the flow will tend to

stabilize and production of turbulence will diminish towards zero and the
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turbulence already created will decay duc Lo viscosity. In practice flows
approximating a line-vortex are used to stabillze unstable fluid conflgura-
tions such as vortex stabilized electric arc, (Chow and Uberoi 1972). Experi-
ments lend support to the above criterion (9) without regard to any limitations
of the cited stability theories.

We have conducted a simple experiment to check the stability considera-
tions. Water was injected tangentially all along the inner wall of a transparent
vertical cylindrical vessel of 30 cm diameter, 50 cm long, with a central
drain in its flat bottom and nearly full of water. After the vortex was set
up the drainage was reduced in steps after each repetition of the experiment
described below. There was no drainage during the last experiment., The fluid
in the center was made turbulent by stirring it randomly or by spinning a 0.6
cm diameter rod spanning the entire length of the cylinder in the direction of
the main vortex or opposing it. The turbulent flow was made visible by painting
the stirrer or the rod with water soluble ink. Care was taken to limit the
disturbance to a short time period, so as to confine the initial disturbance
to a cylindrical region of about 3 cm diameter, which may be considered small
in size compared with the size of the main vortex. The Reynolds number FO/v
of the vortex was about 103. In every case the initial turbulence decayed and
was not sustained at the expense of the energy of the relatively slowly changing
main motion of the vortex.

In another experiment at To/v =17.8 x 104 we have made detailed
velocity measurements in a trailing vortex when it approached a line vortex

for a short distance, i.e. u, = u. The existing turbulence in the vortex
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almost disappeared (Singh and Uberoi 1976). This further substantiates our

claim that turbulence cannot be sustained in a line vortex.
3. Turbulent Line-Swirl, Line-Vortex, and Their Combination

A line-swirl is unstable according to the criterion (9) based on the
assumption of an inviscid fluid. At sufficiently high Reynolds numbers it
becomes unstable, which is consistent with experience. We have recently de-
veloped the structure of a turbulent swirl based on plausible assumptions,
(Uberoi, 1977a).

A line-vortex is stable unless it has a swirl superimposed on it;

i.e., there is a finite radial region where dP2/dr < 0. Turbulence will
develop in the nature of an initial disturbance and decay at a faster rate
than the asymptotic rate of growth of the vortex core. However, there are
several theories of sustained turbulence in a line-vortex. They assume that
there exists three-dimensional turbulence. However, there is only one mean
velocity component Uy (r,t). The equation governing a turbulent line-swirl,

line-vortex, or their combination is

C. 2 g PR e i Sl
5T (r uO) ot © (-u u, + ol ) (10)
where - pur'uo' is the turbulent stress.

We note that the equation (6) for the rate of change of angular momentum
of a turbulent line-vortex or line-vortex-swirl is the same as for the laminar

case. Since any turbulence is confined to the vortex core, it does not affect
the ultimate transfer of angular momentum throngh the potential flow surrounding

the vortex core.
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Squire (1965) was the first to consider a vortex with a turbulent

core. In effect, he assumed that "turbulent" kinematic viscosity,

N aFO (11)

where o is a constant. The solution is given by (7) with v replaced by
aFo . Since the turbulence is confined to a finite radius, \)t should vanish
as r » . Squire's assumption allows far too much angula% momentum to
escape to infinity which is determined by (6).

We may try to save Squire's solution by stipulating that it is only
valid for a vortex in the presence of uniform atmospheric turbulence where a
constant v, may be used. However, there are serious difficulties with this
artifice. A constant turbulent kinematic viscosity due to atmospheric turbw
lence has nothing to do with Fo which is associated with the vortex. Let
the atmospheric turbulence be strong enough to interact with the vortex. In
the potential part of the vortex, duc to spatlally varying rate of strain,
the interaction would vary spatially and with time. Consequently vt cannot
be assumed constant. Further, we cannot assume that the entire vortex inter-
acts significantly with the atmospheric turbulence, and the outer flow is still
potential with o F0/2ﬂr for all time.

Hoffman and Joubert (1963) considered radial transfer of angular momentum
in the turbulent core of a line-vortex. Using certain assumptions they concluded
that the circulation varies logarithmically with radial distance in the region

of maximum u They failed to show how the momentum is transferred to large

o *
radial distances; this transfer is determined by viscosity and is given by (6).




The total rate of change of angular momentum is due to viscosity and
cannot exceed that given by (6). If we insist on the growth of the core,
i.e., decrease of its swirl velocities faster than that caused by viscosity,
then the outer flow must speed up, since the total angular momentum must be
conserved except for a small loss due to viscosity. It follows that the
circulation in the region of potential flow where the flow speeds up must
exceed or over-shoot FO . Various elaborate theories have been developed to
"prove" the existence of a circulation over-shoot. In fact, the over-shoot
is a direct consequence of the insistence mentioned above, which may take
many different forms.

Govindaraju and Saffman (1971) assume that r2 ;;1*:&;? and ru, are
functions of r/t% and (4) becomes a total differential equation. The insistence
is contained in this functional dependence; 1i.e., the maximum value of ug
must decrease and the core size must increase faster than would be caused by
viscosity.

Macagno and Macagno (1975) assume that if € dis the mean rate of strain

then the turbulent kinematic viscosity
(12)

where o and B may vary with space and time but are taken to be constant in
their analysis. The quantity a here is not related to that in (11). The
above is supposed to include vortex generated and atmospheric turbulence. In
accordance with the above discussion of Squire's work o must equal v .

The equation (12) allows turbulent stresses and hence production of turbulence
in the outer potential flow where € 1is finite.

10
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Theories discussed here and other such theories were based on the

unjustifiable belief that a line-vortex is equivalent to a trailing vortex
where t 1s replaced by z/uo . The results of the analyses were compared
with experimental observation of trailing vortices.

Measured data on trailing vortices have been fitted to Squire's solution
for a line-vortex, although the value of the constant a varies from case
to case (Rose and Dee 1963; McCormick et al 1968). Owen (1970) has given an
explanation for the variations of a with Po / v . This does not remove

the fundamental objections raised above.
4. Laminar Trailing Swirl, Trailing Vortex, and Their Instabilities

The equation governing Ug in these flows is

) 2 )
(uo + uz) ugr + Py (uru

9z SERE S §—r- =) s (13)

0

where u, is the constant prevailing velocity along the swirl axis. 1In the

core of these flows the swirl velocity uy decreases with downstream distance

9
z and therefore 55 > 0. The flow in the core diverges, causing significant
radial and some associated axial convection of angular momentum. We illustrate

this by examining the total rate of change of angular momentum in a trailing

vortex. Integrating (13), we have

b - MR, 2 A
Zwuoof 57 Ut dr = =% == (uzue)r dr - [urr] Tl R R
convection diffusion
(14)

11
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Batchelor (1964) has calculated axial flow in a trailing vortex, neglecting
radial flow. He assumes that all velocities are small compared with u, » so

that (13) becomes

u
5 2 3 33 9
LB U e Rl -l - (15)

which replaces a trailing vortex with a line-vortex. The velocity ug is
given by (7) with t replaced by z/uo . Using this u, pressure is cal-

culated from the approximate equation

2
P ug / r= %& . (16)

Axial velocity u, is calculated using this pressure and the equation

2
a_ = o oA Lo,
P Yy 9z Y2 0z T 8r2 = r or ) o 1 an
The result is
2 2
* 2u_ 3 L ?
u = - &n exp (cE) + —— Q. (&) — exp(-£),
z 3% vz v 3’z 2 =
(18)
where
2
£ = u r / 4vz (19)

The function Q2 and the constant L are not of interest here. We have

calculated the radial and associated axial convection as

. 3 2
FO .(urr) SR, -ZOI = uzFr dr = Fo /16n zu_ (20)

x oy B atedenm Y
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The importance of the neglected convection of angular momentum can be

expressed as the ratio

: ® 3 i
convection/diffusion of uzFrdr + FO (urr)r *w/ZvFO 21)

9z

(r,/v) (T /64nzu )

(Folv) (c/4002)

where we have assumed that the trailing vortex is generated by a semi-infinite
wing of chord c¢ and Fo = cu°/2 . Since the vortex is essentially a high
Re&nolds number phenomenon Fo/v >> 1 and z/c must be large to make this
ratio much smaller than unity. TIn general radial and associated axial con-
vection of angular momentum cannot be neglected.

Moore and Saffman (1973) have calculated axial velocity in the core
of a vortex for which at z = o, u0 = Br_n where £ 1Is a constant and
0 <n <Al. They also neglected radial and associated axial convection of
angular momentum. Using their axial velocity, we find that the requirement for

these neglects is that

2 2
e/uo<§§)“<<1 (22)
They were concerned with axial velocity during vortex sheet roll up near the
wing or small 2z where the flow is essentially three-dimensional and u_ can
not be neglected. The condition (22) may be satisfied at large Z , but then
vortex is rolled up and corresponds to Batchelor's case.

The present discussion shows that for those distances of interest from

the origin where the vortex is significantly changing the dominant mechanism

13




for a decrease in the swirl velocities in the core of a laminar trailing
vortex is radial and associated axial convection of angular momentum.
Another important effect of axial flow or difference in uz between
the core and the surroundings is that a flow becomes unstable which was
otherwise stable according to criterion (9), (Uberoi et al. 1972).
A trailing vortex is further destabilized when a trailing-swirl is

added to it such that there is a finite radial distance r for which

2
dl' /dr < 0 , in the same manner as for a line-vortex.
5. Turbulent Trailing Vortex

On dimensional grounds we may write the functional dependence of the

circulation T ( - Zwrue) as
P/Fo =y (ruo/Fo 5 zuo/FO;Fo/v) E (23)

All "free" turbulent flows, i.e., without constraining rigid boundaries, are
independent of Reynolds number. There has been some speculation (McCormick
et al. 1968) that the structure of a turbulent trailing vortex may depend on
its Reynolds number Fo/v :

The equation governing u, using slender vortex core approximation

0
is
u
3 2 8 .2 i o 3 2.2
9z (uo A uz)uer T r Eih urue ur Yg ki or r - (24)

ITntegrating this equation we have

L4 .




w 9 )
g, Ry o ol i - Tl
u, oJ 3 rrdr S lvde -~ ur) T - 20 (25)
= - [" y (r-r ) rdr - 2vr (26)
o 9z 2z 0 0
convection diffusion

where we have assumed that turbulence in the trailing vortex vanishes as

r > » and we have made use of the continuity equation in deriving (26). It
is well known that in all flows without constraining boundaries the turbulent
fluid is separated from non-turbulent fluid by a sharp irregular boundary.
Velocity fluctuations decay very rapidly as we move from turbulent into non-

turbulent fluid. Further, measurements, Singh (1974), Uberoi (1974), in a

s

L
trailing vortex show that both r(u '2) and r(ur'z)l vanish as r > «,

G
Hence r2 E:—Eg‘+ o asr > . We are concerned here with the spread of
turbulence which is initially concentrated near the axis of the trailing vortex.
In all cases of turbulent flow thus far experimentally investigated, the
irregular front separating the turbulent from non~turbulent fluid propagates
at a finite rate rather than diffusing to infinity. The vanishing of r2 G:Eg
is consistent with all known experimental facts about the trailing vortex and
the turbulent flows in general. Assuming that r2 G:Eg is finite as r » =
would lead us to the same difficulty as Squire's work (1965). Angular momentum
would escape to infinity due to turbulent stresses far in excess of that allowed
by laminar viscosity of the fluid.

It follows from (26) that the radial and associated axial convection of

angular momentum are important if the turbulent vortex grows faster than the




laminar vortex and there is no overshoot or T } ¥e * The experiments
determine the magnitude of the relative importance of convection versus
diffusion.

The velocities Ug and u, in a turbulent trailing vortex behind
an airfoil have been measured by Singh (1974) and Uberoi (1974) at
Fo/v = 2.F x 104 . Unfortunately, the convection of angular momentum cannot
be accurately calculated from measured U We have calculated the first
and the last terms in (25) using measured u, and thus determined that
diffusion is about a percent or so of the convection of the angular momentum.
Therefore, the dynamics of turbulent trailing vortex arc independent of
FO/v at least at the Reynolds number of the experiment and above. In the
literature the effect of slowly decaying and different initial conditions
in different experiments may have been confused with the effect of Reynolds

number on the structure of these vortices. The terms involving v may be

neglected in (23) through (26) (Uberoi 1977b); thus

I‘/I‘0 = y(ruo/l‘O . zuo/Fo) and (27)
u é—-u 2r2 = 2-—-r.‘z(—u u, —u 'u.') - —é'u u r2 (28)
o 09z 6 or r 6 r 9 9z z O

In order to proceed further we may write the equations governing u
and u, and assume enough relations among the independent variables so that
their number equals the number of equations. Instead we propose an elemental
theory which incorporates the mechanism of vortex changes discussed above.

We look for a solution such that I‘/I‘o is a function of a single variable

16




b 4 uo 2 I‘o 1
o

(o}

We assume that the total radial and associated axial convection of angular

momentum
2 2 F m

2
® rd 9 .. . T 30
Of [a—r-r (u ue+uue)+ ruue] ~ o (30)

The terms on the right hand side of (28) are only significant in the core
where I - FO is significantly different from zero. The sign of these
terms should not depend on the sign of T - Fo and they should have proper
dependence on r as r > 0. On these bases and in light of discussion of
the physical phenomena we propose that

2 2 I o

& 24 - o _m " o
3 (u Yo + u 'u )+ S u Mg =na ( 2, ) T (8 Fo) . ©XP (bn) (31)

where a and b are constants. The factor exp(bn) 1is in recognition

of the fact that the turbulent core at any 2z 1is of finite size and the

expression (31) should rapidly approach zcro as we go from turbulent corc to
the outside non-turbulent fluid.

Using (31) the governing equation (28) becomes

r Z
i ARV —o ym i
u 37 'r n a ( m_ ) (8 Po) - exp (bn) (32)
and for m =1 - n we have
dy :
4 = al-y) exp(bn) (33

17




The solution is

y=1-1/(1 + % [exp(bn) - i] ) (34)

The comparison of this expression with observations, Singh (1974), Uberoi

(1974) is shown in figure 1, where a = 150 and b = 10.
6. Final Stages in Vortex Decay

If in (30) m > O then relative to diffusion the importance of convection
of angular momentum decreases as z > «. Independent of the theory proposed
here, let us assume that the convection is negligable compared with the dif-
fusion and the core size continues to increase at least at the rate given by
the diffusion as 2z > «. With increasing core size and no radial and associated
axial convection of angular momentum, the axial velocity becomes unimportant.
We clafm that under these conditions the flow becomes stable and no sustained
turbulence is possible. See section 2 above.

In studies of laminar and turbulent line vortices self-similarity is
often assumed (Squire 1965, Govindraju and Saffman 1971). Consider the fol-
lowing form

2 n
F/FO = y(r /et) = y(&) (35)

Integrating (10) and using (35) we have

-nl tn_lc

w 3 2 o 1) o s
2nf T A foy §dE = ~2F (36)

[t follows that n = 1 and ¢ ~ v. Using (35) the expression for the rate of

change of kinetic energy of mean motion becomes

18
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o idobe

2
nfo 5? ug r dr = -I' /8nt (37)

It may be shown that Fz/Bﬂt is the rate of viscous dissipation of kinetic
energy of a laminar line vortex given by (7). In a line vortex with a tur-
bulent core, the rate of decrease of kinetic energy should exceed that in a
laminar line vortex with the same over-all parameters. Hence, even if a tur-
bulent line vortex exists it cannot have the form given by (35). We may say
that the virtual origins of t are different for laminar and turbulent

line vortices. However, this becomes unimportant as t - «,

7. Discussion

We have shown that all previous theories of decay of trailing vortices
are deficient or just plain wrong since they are based on untenable hypotheses.
We find the dominant physical phenomena of radial and assoclated axial convec-
tion of angular momentum and the role of axial velocity in sustaining turbu-
lence in the vortex core.

A theory for a turbulent trailing vortex is presented which satisfies
the requirement of turbulent theories. We propose an expression for the
dominant physical phenomena which is consistent with the basic equations and
the results agree with observations.

Reasonably complete discussion is presented because of confusion in this
field and to provide suggestions for further experimental work in turbulent
vortices. It is necessary to conduct more extensive experiments to accurately
determine the values for m and n. Once we have accurate measurements of

u, then we may use the following relation to independently determine m ,

19




from (31) we have

I P=l 9
L 0o b fo o
Io 2= uz(F—Po)rdr = na(zuo) Io ( 7 ) n exp(bn)dn (38)

In the past there have been no guiding physical processes or theories

which could help evaluate various devices and methods for amelioration of
vortex wake problem and its influence on the operation of airplanes which may
E interact with trailing vortices of other airplanes. It is hoped that present

theory and discussion of physical phenomena will provide such guidance.

This research was initiated during a University of Colorado Faculty

E Fellowship.
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APPENDIX

We have used Batchelor's work (1964) to estimate the radial convection
and the associated axial convection of angular momentum. His work has been
criticized by Tam (1973), which in turn has been criticized by Herron (1974).
We can estimate the terms neglected in the linear theory directly from the
equations.

The linearized equation of motion for e is

2

Rl AR Al

uB—-u :
0dz z p 3z 9rj3 or

In the linear theory it is further assumed that the pressure is given hy the

equation
2
1apil T
p Jr t A2
-n 2
where 2ruer = Fo(l—e ) and n = ur /4vz. This leads to
r 2 4 ’
13p o (._9) L‘z‘ (Pn) A3
p 9z 2 8vz
where
-t 2
5 1= Qea )
P(n) = fn 2 dn A4

For the sources given by A3 the diffusion equation Al has no self-similar or

asymptotic solution (see below). Let us assume that at 2z

P T TP T Tr Ty




u, (r,zo) =0 A5

Due to the pressure gradient u, will, of course, change. This is a
reasonable initial condition since the main interest is the change u, due to
the prescribed pressure gradient.

The radial convection and associated axial convection of angular momentum

at z, is given by (14), thus

fo [g—zuz (I‘—I‘o)] r dr
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where we have made use of Al - A5 and the value of the definite integral
is approximately 1/2. The ratio (see eq. 21)
convection/diffusion = (FO/v)(PO/64wz°uo) A7

which agrees approximately with (21).
ia orager to examine the general solution of Al we consider the change in

the integrated velocity which 1s, of course, determined by the sources given

by AV, Integrating Al and ausIng A3 and A4 for large n, we have
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where we have assumed that there is no velocity deficit at z . The integrated
velocity deficit given by A9 continues to increase with 2z and can be made
to have any value by suitable choice of zZg A particular self-similar

solution, namely

2

u =

N y ey e"ﬂ Imp(t)etdt Al0
0

was proposed by Tam (1973) and gives infinite integrated axial velocity
deficit as it is should in view of our discussion.

For the sources given by A3 the only properly posed problem is to prescribe
an initial uz(r,zo) and Al will determine the subsequent development of u, -
There is no solution which is either self-similar, or independent of

uz(r,zo)and z, (depending only on the integrated uz(r,zo)).
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